Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm
نویسندگان
چکیده
A popular method for computing the matrix logarithm is the inverse scaling and squaring method, which essentially carries out the steps of the scaling and squaring method for the matrix exponential in reverse order. Here we make several improvements to the method, putting its development on a par with our recent version [SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989] of the scaling and squaring method for the exponential. In particular, we introduce backward error analysis to replace the previous forward error analysis; obtain backward error bounds in terms of the quantities ‖Ap‖1/p, for several small integer p, instead of ‖A‖; and use special techniques to compute the argument of the Padé approximant more accurately. We derive one algorithm that employs a Schur decomposition, and thereby works with triangular matrices, and another that requires only matrix multiplications and the solution of multiple right-hand side linear systems. Numerical experiments show the new algorithms to be generally faster and more accurate than their existing counterparts and suggest that the Schur-based method is the method of choice for computing the matrix logarithm.
منابع مشابه
Computing the Fréchet Derivative of the Matrix Logarithm and Estimating the Condition Number
The most popular method for computing the matrix logarithm is the inverse scaling and squaring method, which is the basis of the recent algorithm of [A. H. Al-Mohy and N. J. Higham, Improved inverse scaling and squaring algorithms for the matrix logarithm, SIAM J. Sci. Comput., 34 (2012), pp. C152–C169]. We show that by differentiating the latter algorithm a backward stable algorithm for comput...
متن کاملEvaluating Padé Approximants of the Matrix Logarithm
The inverse scaling and squaring method for evaluating the logarithm of a matrix takes repeated square roots to bring the matrix close to the identity, computes a Padé approximant, and then scales back. We analyze several methods for evaluating the Padé approximant, including Horner’s method (used in some existing codes), suitably customized versions of the Paterson– Stockmeyer method and Van L...
متن کاملPadé and Gregory error estimates for the logarithm of block triangular matrices
In this paper we give bounds for the error arising in the approximation of the logarithm of a block triangular matrix T by Padé approximants of the function f (x)= log[(1 + x)/(1 − x)] and partial sums of Gregory’s series. These bounds show that if the norm of all diagonal blocks of the Cayley-transform B = (T − I )(T + I )−1 is sufficiently close to zero, then both approximation methods are ac...
متن کاملApproximating the Logarithm of a Matrix to Specified Accuracy
The standard inverse scaling and squaring algorithm for computing the matrix logarithm begins by transforming the matrix to Schur triangular form in order to facilitate subsequent matrix square root and Padé approximation computations. A transformation-free form of this method that exploits incomplete Denman–Beavers square root iterations and aims for a specified accuracy (ignoring roundoff) is...
متن کاملM ar 2 00 7 What is the Inverse of Repeated Square and Multiply Algorithm ?
It is well known that the repeated square and multiply algorithm is an efficient way of modular exponentiation. The obvious question to ask is if this algorithm has an inverse which would calculate the discrete logarithm and what is its time compexity. The technical hitch is in fixing the right sign of the square root and this is the heart of the discrete logarithm problem over finite fields of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012